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NONLJXEAR-AVERAGING ERRORS I N  W I A T I O N  PY.ROb'EECRY 

by Donald R. Buchele 

Lewis Research Center 

SUMMARY 

The e r r o r  i n  measuring the  average of a f luc tua t ing  temperature by opt ica l  
means i s  determined f o r  cases of temporal or s p a t i a l  f luc tua t ion  with s m a l l  op- 
t i c a l  depth. The method i s  applicable t o  l ine-reversal ,  absorption-emission, 
and other pyrometric methods that involve the  measurement of the  absolute or 
r e l a t i v e  magnitudes of radiant  f lux .  It i s  a l s o  applicable t o  some techniques 
of gas analysis by radiome'hric means. Experimental confirmation of the analy- 
s is  i s  described f o r  a Gaussian probabi l i ty  density d is t r ibu t ion .  

The analysis  accounts f o r  a previously reported discrepancy of a few per- 
cent between a l ine- reversa l  pyrometer and other types of l o c a l  (probe-type) 
pyrometers. 

INTRODUCTION 

The accuracy of o p t i c a l  methods of measuring gas temperature i s  often i m -  
paired when time or space var ia t ions i n  gas temperature a f f e c t  the amount of 
radiant  f l u x  delivered t o  the  instrument. Since radiated f l u x  i s  an exponen- 
t i a l  function of temperature, the r e s u l t  i s  a nonlinear averaging of tempera- 
t u r e  as determined by f l u x  measurement. 

Some experimental conditions ( i l l u s t r a t e d  i n  f i g .  1) t h a t  may lead t o  
e r rors  i n  temperature measurement a r e  the  following f 

(a)  Constant emissivity throughout the  l i n e  of s i g h t  ( f i g .  l ( a ) ) .  G a s  
flow is  observed by an opt ica l  system over a path length L and a cross sec- 
t i o n  MP. (Symbols a r e  defined i n  appendix A . )  The radiated flux Q from a 
gas of high emissivity (EA = 1.0) and large o p t i c a l  depth 
mainly from one end of the o p t i c a l  path. For a gas of low emissivity 
(EA << 1.0) a l l  p a r t s  contribute equally. 

kAL originates  

( b )  Variations of absorption coef f ic ien t  a-long t h e  l i n e  of s ight  and with 
Within the  f i n i t e  wavelength i n t e r v a l  accepted by the wavelength ( f i g .  l ( b )  ) . 

f l u x  detector,  kAL may vary from zero t o  a value much grea te r  than unity; t h i s  
i s  t y p i c a l l y  the case f o r  s p e c t r a l  l i n e  rad ia t ion .  Some of the  opt ica l  methods 
( r e f .  1) require constant emissivity over the  wavelength i n t e r v a l  of measure- 
ment. 



The absorption coef f ic ien t  i s  shown a l s o  as varying with L. T h i s  ma.y be 
the  r e s u l t  of a temperature p r o f i l e  t h a t  changes the  composition of the  gas,  or 
t h e  r e s u l t  of a radia'cing mater ia l  added l o c a l l y  to t he  gas stream. Local ad- 

(a) Radiated f lux  weighted by emissivity. eL (b) AbsorDtion coefficient 

spectrum and profile. 
TI 

0 n 1 

(c) Temperature profile. 

t 
(d) Fluctuating temperature. 

(e) Fluctuating absorption 
coefficient. 

Figure 1. - Experimental conditions. 

d i t ion  of sodium from a movable probe w a s  
used i n  the  inves t iga t ions  of references 2 
and 3 to obtain a temperature p r o f i l e  by 
the  l i ne - r eve r sa l  method. This avoided 
the  e r r o r  of averaging a p r o f i l e .  

( c )  Temperature p r o f i l e  along the  
l i n e  of s igh t  ( f i g .  l ( c ) ) .  A temperature 
p r o f i l e  may e x i s t  along the  l i n e  of s igh t  
as i n  the  cross sec t ion  of flow f r o m  a. 
nozzle. The rad ia ted  f lux depends on t h e  
absorption coef f ic ien t  d i s t r ibu t ion  
( f i g s .  1( a )  and (b.)) . A temperature pro- 
f i l e  can a l s o  e x i s t  in the  d i rec t ions  M 
and P ( f i g .  l ( a ) ) .  The combined e f f e c t  
of temperature p r o f i l e  and absorption 
coef f ic ien t  i s  reported i n  reference 4. 

(d)  Time +ar ia t ion  i n  temperature 
( f i g .  l ( d ) ) .  A f luc tua t ing  temperature 
may be caused by imperfect combustion. 
The f luc tua t ion  may be i n  time f o r  a Plow- 
ing  gas,  o r  i n  s$ace along lengths L, My 
and P f o r  e i t h e r  a s t a t iona ry  or a flow- 
ing  gas. , Fluctuat ion measurements a re  
given i n  reference 5. 

( e )  Time va r i a t ion  i n  absorption co- 
e f f i c i e n t  ( f i g .  l ( e ) ) .  Often a var ia t ion  
i n  absorption coef f ic ien t  w i l l  accompany 
va r i a t ion  i n  temperature. For example, 

t he  change i s  subs t an t i a l  f o r  a concentration of the  hydroxyl molecule i n  flame 
gases. 

For a combination of conditions ( e )  and ( a ) ,  i n  which a l o c a l  temperature 
T(x , t )  var ies  with time and loca t ion ,  and of conditions ( b )  and ( e ) ,  i n  which a 
l o c a l  gas absorption coe f f i c i en t  var ies  with time and with wavelength 
(kA = kA(x, t ,h ) )  , t he  - r e su l t an t  l o c a l  radiance is 
ent  average radiance Ng of t he  gas is  

Nh = NA(x,t,A). The appar- 
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where the  exponential f ac to r  i s  the  radiant  transmittance from a l o c a l  point i n  
the  gas t o  the  gas boundary, and tl 
surement i s  averaged. I n  prac t ice ,  t h e  equation m u s t  be s implif ied by approxi- 
mations appropriate t o  the  experiment. The following a re  examples of such 
s implif icat ions:  

is  the  time i n t e r v a l  over which the  mea- 

(1) A narrow-band f i l t e r  may l i m i t  the  wavelength i n t e r v a l  s o  that a l l  
quant i t ies  may be a.ssigned monochromatic values. 

( 2 )  The absorption coef f ic ien t  may be s o  low t h a t  the exponential f ac to r  
may be assumed t o  be unity. 

(3) The absorption coef f ic ien t  may be assumed constant.  

(4 )  The f luc tua t ion  amplitude may be assumed near ly  constant from 0 
t o  L. 

(5) The temperature p r o f i l e  may be f l a t  enough s o  t h a t  it may be assumed 
t o  contribute negl igible  e r ro r .  

I n  the  subsequent analysis  of temperature f luc tua t ions ,  approximations 
(l), (2), and (5)  w i l l  be used. 
that it becomes 

These approximations simplify equation (1) s o  

To in tegra te  equation ( 2 )  i n  terms of temperature, it i s  necessary t o  
subs t i t u t e  Nj,(T) f o r  Nh given by Wien's r ad ia t ion  equation, kh = kh(T) de- 
pending on the p a r t i a l  pressure of t he  rad ia t ing  molecule, and then subs t i t u t e  
some function T ( x , t ) .  I f ,  a t  a.ny - x, t he  temperature T,(t) i s  f luc tua t ing  
only s l i g h t l y  about a mean va.lue T, it i s  not necessary t o  have the  e x p l i c i t  
funct ion T x ( t )  . 
p(Tx) of t he  temporal f luc tua t ions  of temperature about the  mean value 
Therefore, t he  average given by equation ( 2 )  may be replaced by an average i n  
terms of p(Tx) as 

It i s  s u f f i c i e n t  t o  use the  probabi l i ty  densi ty  d i s t r ibu t ion  - 
T. 

The quant i ty  31,~ i s  the  average of t he  means 3h,g,x a t  any x along the  
op t i ca l  path L, where 
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Since a Gaussian d i s t r i b u t i o n  of temperature about an average value 
(Gaussian probabi l i ty  densi ty  function) is  of ten approached i n  experiments, 
t h i s  d i s t r ibu t ion  w i l l  be assumed. Experimental evidence w i l l  be presented 
l a t e r  t o  show that t h i s  a.ssumption w a s  v a l i d  i n  a representat ive t e s t  f a c i l i t y  
burning gasoline and a i r .  

The dependence of t h e  averaging e r r o r  on other funct ional  forms of the 
d i s t r i b u t i o n  is  t r e a t e d  i n  appendix B. The cases t r e a t e d  w i l l  be those i n  
which temperature var ies  per iodica l ly  with time. 

ANALYSI s 

I n  a gas of thermal temperature T, the  s p e c t r a l  radiance i s  given by the 
Wien equation as 

- c z/AT 
N~ = c l ~ - 5  e ( 5 )  

The Wien equation deviates from the exact Planck equation by l e s s  than 1 per- 
cent for AT < 6000 (p>( OK). AT < 3000 (p)  (OK), and l e s s  than 10 percent f o r  

The absorption coef f ic ien t  kA for one consti tuent of a gas mixture is  
proportional t o  the partial  pressure, which i n  t u r n  i s  proportional t o  the 
equilibrium constant of t h e  gas mixture when the  p a r t i a l  pressure i s  a s m a l l  
f r a c t i o n  of the  gas pressure.  I n  turn ,  the equilibrium constant var ies  expo- 
n e n t i a l l y  with tempera.ture according t o  the  van ' t  Hoff thermodynamic equation , 
s o  t h a t  

-BIT k A = A e  

where A and B a r e  constants,  and B can be determined by using values of 
p a r t i a l  pressure as a function of temperature computed by t h e  method of r e f e r -  
ence 6.  Thus , equations (5)  and ( 6 )  may be combined t o  y i e l d  

For a Gaussian d i s t r i b u t i o n  about an average 
- 

temperature T 

ATI2 

where AT i s  the average deviation of the f luc tua t ions ,  and by def in i t ion ,  

p(T)dT E 1 

4 
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Subst i tut ing equations ( 7 )  and (8) i n t o  equation ( 4 )  y ie lds  

- 
A s  T - T becomes la rge ,  the exponent of e becomes a la rge  number. Conse- 
quently, the term containing 1/T may be approximated by a parabola. A parab- 
ola  t h a t  matches 1/T a t  T and has the  same slope there  i n  terms of the  var- 
iab le  T - T is 

- 

where a constant C w i l l  be determined. 

In tegra t ion  a f t e r  completing the  square i n  the  exponent yields  

where 

- 
The average o p t i c a l l y  determined thermal teknperature To i s  defined by 

- -C2/AT0 

NLg,x A 1 = k c A-5 e 

- - 
The averaging e r r o r  To - T i s  obtained from equations (11) and (13) as 
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where 
- 
T I n ( 1  + Cy) 

2 ( ? +  B) 
p = 1 -  

Figure 2 i s  a p lo t  of equation (14) f o r  constant values of and a con- 
s t a n t  C equal t o  0.8. This value of t h e  constant yields  an averaging e r r o r  
within 5 percent of t h a t  obta.ined by numerical in tegra t ion  of equation ( 9 )  f o r  
AT/T < 0.15 and (To - T)/T < 0.1. The values of ( cg/A + B)/T i n  f igure  2 

I -  I I I I I I l l  I 1 . 1  I 
Emitter Wavelength,. F 

36 0.31 
13.5 0 59 

. 01 .02 .04 .06 .08 .1 * *  - .4 .6 . 8 _  1 
Fractional average deviation of temperature, ATIT, or radiance, ANIN 

bution. Average temperature, 1800' K. 
Figure 2. - Average-temperature er ror  due to Gaussian probability density distr i-  

_. 
a r e  f o r  the indicated 
wavelengths rad ia ted  by 
hydroxyl (OH) and water 
(HzO) molecules and sodi- 
um ( N a )  atoms a t  1800° K 
with B = 0 f o r  Na  and 
H20 and 
f o r  OH. 

B = 18,600' K 

The average opt ical ly  
determined temperature 
To may be measured by 
sodium-line reversal .  
Average deviation AT 
may be measured el-ectr i -  
c a l l y  with an a l te rna t ing  
current meter t h a t  re -  
sponds t o  the  average 
value of f luctuat ions i n  
the  detector output vo l t -  
age. For such radia.nt- 
f l u x  measurement, equa- 
t i o n  ( 7 )  i s  d i f f e r e n t i -  
a ted,  and the r e s u l t  i s  

- 

where RAkA i s  proportional t o  the  detector output average (d i rec t -cur ren t )  
voltage,  and A(NhkA) is  proportional t o  the  detector output average deviation 
( a l t e r n a t i n g  current)  voltage.  Subst i tut ing - equation ( 1 6 )  i n t o  equation (12)  
yields  the  averaging e r r o r  (To - T)/T This 
i s  p l o t t e d  i n  f igure  2 .  The radiance measurement is  subject t o  a t tenuat ion by 
space-meraging of 
sor  i s  used. Selection of a long wavelength f o r  t h i s  measurement minimizes an 
e r r o r  caused by the  nonlinear r e l a t i o n  between NA a.nd T i n  equation ( 7 ) .  

i n  terms of radiance f luc tua t ion .  

A(NhkA) along the o p t i c a l  path, unless a probe-type of sen- 
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I n  the  course of development of a radiometer-pyrometer, the  instrument w a s  
t e s t e d  by being used t o  measure temperature i n  a gasoline-burning je t  ( r e f .  7 ) .  
The exhaust gas flowed through a concentric ASME nozzle t h a t  produced a je t  of 
3-inch diameter. Since low-temperature combustion products i n  the o p t i c a l  path 
outside t h e  j e t  would absorb water radiat ion,  this absorption w a s  minimized by 
using an a i r  purge i n  a tube t h a t  extended up t o  the j e t  boundary ( f i g .  3 (a) ) .  

1.6 
z 
z P 
4 -- 1.4 
u I= 

v m 
m .- 

1.2 
L 
0 

+ Cl 
P 1.0' 

.a 

4 

E 
3 
c 

L m 
n 

o .6 
5 
c - 
c 0 

z m .- 5 . 4  
m m m 
L m 

5 .2 
m > 
m 
m 

.- 
c - 
w 

I I I I I I I I I I I I r-n 

+ 

0 .5 1.0 1.5 

I\ 1 
I 

Ambien 
temperature 

a a  

2.0 2.5 3.0 3.5 0 
Radial distance from jet axis, i n  

.5 1.0 1.5 2.0 

\T/ATc I 2.5 
3.0 3.5 

(a) Relative values. (b) Relative average deviations. 

Figure 3. - Profiles of temperature and calculated radiance. Average temperature, 1800' K. 

Temperature f luctuat ions were measured with a bare-wire crossflow thermo- 
couple of 0.01-inch diameter ( r e f .  8) and with the  radiometer, which used the 
1.9-micron emission from water vapor i n  the combustion products. Frequency 
response of the  thermocouple w a s  extended t o  65 cps by a transformer-type com- 
pensator ( r e f .  9 ) .  Frequency response of the  radiometer w a s  l imi ted  by i ts  
amplifier t o  600 cps. The average deviation of the  s igna l  f luc tua t ion  w a s  
measured with the  vacuum tube voltmeter f o r  both the  radiometer and the thermo- 
couple . 

The average temperature w a s  measured with a self-balancing potentiometer 
f o r  the  thermocouple. The average radiance w a s  measured with a vacuum-tube 
voltmeter f o r  the radiometer by means of chopped radiat ion.  The voltmeter w a s  
of t h e  type that measures t h e  average value of an al ternat ing-current  waveform, 
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with a low-frequency response t o  1 cps. 
a square wave with a peak-to-peak amplitude equal to the  rad ia ted  f l u x .  
amplitude w a s  twice the  voltmeter reading f o r  an i d e a l  square wave. 
t u r e  p r o f i l e  taken with the  thermocouple i s  shown i n  f igure  3(a) .  
ing calculated radiance p r o f i l e s  a r e  shown f o r  OH and H20 a t  spec i f ied  wave- 
lengths,  with an o p t i c a l  depth much l e s s  than 1.0. The tempera.ture p r o f i l e  was 
converted to radiance by using equation ( 7 )  a t  1 . 9  microns f o r  H20, and a t  0.31 
micron f o r  OH rad ia t ion  with B = 0 f o r  H20 and B = 18,600° K f o r  OH. An 
average radius of the  gas j e t  is indicated,  which, when mult ipl ied by the rad i -  
ance a t  the j e t  ax is ,  would y i e l d  the same f l u x  as t h a t  produced by the  a c t u a l  
p r o f i l e .  . 

The s igna l  with chopped rad ia t ion  w a s  
This 

A tempera- 
Correspond- 

3n j e t  
a x i s  

A temperature f luc tua t ion  p r o f i l e  ta-ken with a thermocouple is  shown i n  
f i g u r e  3 ( b ) .  
shown f o r  H20 a t  the  spec i f ied  wavelength, with an o p t i c a l  depth much l e s s  than 
1.0. An average radius of the ga.s j e t  is  indicated,  which, when mult ipl ied by 
t h e  average deviation a t  the j e t  ax is ,  would y i e l d  'che same a l t e r n a t i n g  f l u x  as 
t h a t  produced by the  a c t u a l  p r o f i l e .  

The corresponding calculated radiance f luc tua t ion  p r o f i l e  i s  

Average over 
o p t i c a l  path 

The following t a b l e  gives the  percent a.verage deviation of gas temperature 
AT/T from 1800' K as measured by the 

Me a suring 
device 

Thermocouple 

Radiome t erb 

aEstimated. 

Frequency bandwidth, cps 

1 t o  65 11 t o  600 

thermocouple on the j e t  axis  and by the 
radiometer averaging across the j e t :  
The radiometer average deviation of 
1.4 percent on the  j e t  ax is  w a s  e s t i -  
mated t o  be the  r a t i o  of the average 
radius f o r  water of f igure  3(a) to t h e  
average radius of f igure  3(b)  m u l t i -  
p l i e d  by the  radiometer measured value. 
The smaller average deviation shown by 
the  radiometer on the  j e t  ax is  may be 
a t t r i b u t e d  to the  at tenuat ion caused 
by o p t i c a l  space-averaging across the  

%i th  water at  1 . 9  IJ-. gas stream. 

The existence of a t tenuat ion due 
to o p t i c a l  space-averaging w a s  demonstrated by making measurements with two 
thermocouples i n i t i a l l y  pla.ced s ide  by s ide  near the j e t  ax is .  Their frequency 
response was extended to 22 cps by a resistance-capacitance compensator 
( r e f .  9 ) .  
thermocouple w a s  moved r a d i a l l y  from the j e t  axis while the other remained 
f ixed  on the  ax is .  The close agreement of the two waveforms ( f i g .  4 ( a ) )  
quickly vanished a t  grea te r  distaaces ( f i g s .  4 (b) ,  ( e ) ,  and ( d ) ) .  The two 
thermocouple outputs were a l s o  f e d  t o  a cor re la tor  t o  give the  cor re la t ion  co- 
e f f i c i e n t  p lo t ted  i n  f igure  5. An average distance 2 i s  indicated,  which, 

Their outputs were recorded with a double-beam oscil lograph as one 

(a) 1/8 Inch  from jet axis. (b) 112 Inch  from jet axis. (c) 1 Inch  from jet axis. (d) 11 Inches from jet axis. 
2 

Figure 4. - Oscillograph records of thermocouple signal amplitudes at axial and several radial positions. (Lower trace on jet axis. 1 
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when multiplied by a coef f ic ien t  of 1.0, would y i e l d  the same area as t h a t  
under t h e  curve. The distance 2 i s  approximately 1/2 inch, whereas the j e t  
diameter 2R of f igure  3(b)  i s  4 inches. Since 2 i s  s m a l l  compared with 
this diameter, as an approximation the  gas lying along the  o p t i c a l  path can be 

- - c" 
n 

.- 0 
c 
c 

0 

h -  

\ > 2.0 

Radial distance from jet axis, in. 

Figure 5. - Correlation curve for thermo- 
couple at jet axis. 

replaced by a f i c t i t i o u s  d i s t r i b u t i o n  con- 
s i s t i n g  of four  zones of length 22, each of 
which may be t r e a t e d  as rad ia t ing  independ- 
en t ly  of the  others and rad ia t ing  an equal 
amount of f lux.  The average f luc tua t ion  from 
a l l  four zones w i l l  be dr times the  f luc-  
tua t ion  of any one zone, whereas the  average 
f l u x  w i l l  be four  times t h a t  radiated from 
one zone. Therefore, the  f luc tua t ion  of 
1 .4  percent given by the radiometer on the  
j e t  ax is  (previous t a b l e )  should appear as a 
l o c a l  f luc tua t ion  of 2.8  percent a f t e r  cor- 
rec t ion  f o r  a t ten tua t ion  due t o  space- 
averaging. This conclusion agrees qui te  wel l  
w i t h  the  value of 3.2 percent recorded by the  
thermocouple. 

These experiments thus c l e a r l y  indicate  
the existence of a t tenuat ion due t o  both 
time-averaging and space-averaging. They 
indicate  a l s o  t h a t  the average deviation of 
the  f luc tua t ions ,  a-s might be deduced from an 

oscilloscope record of radiometer output, would be smaller than the t r u e  aver- 
age deviation because of a t tenuat ion by space-averaging. I n  the  p a r t i c u l a r  
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experimental apparatus used here, t h e  at tenuat ion by space-averaging w a s  of t h e  
same order of magnitude as t h e  time-averaging a t ten tua t ion .  

The frequency content of the  f luc tua t ions  i s  predominantly l e s s  then 
600 cps, because a tenfo ld  increase of the  radiometer from 65 t o  600 cps cor- 
responds t o  only a 25 percent increase in average deviation ( t a b l e  on p. 8 ) .  

e t e r  a t  the 600-cps frequency l i m i t  would a l s o  be expected f o r  a thermocouple 
t h a t  had the  same frequency response. Thus, the most l i k e l y  percentage f l u c -  
tua t ion  of the gas temperature would be 4 percent f o r  a probe-type sensor with a 
frequency response of up t o  600 cps. The corresponding e r r o r  of a sodium-line 
reversa l  temperature measurement i s  1.45 percent, based on f igure  2.  A cor- 
rec t ion  of this amount would account f o r  t h e  discrepancy a t  1800° K between the  
l ine- reversa l  method and the other temperature probes reported i n  reference 7 .  

The increase from 2.0 t o  2.5 shown i n  the  t a b l e  on page 8 f o r  the  radiom- 

The probabi l i ty  densi ty  d i s t r i b u t i o n  of amplitude f luc tua t ions  w a s  re -  
corded by an analyzer described i n  reference 10. The temperature d i s t r i b u t i o n  
obtained with the thermocouple i s  shown i n  f igure  6(a) ,  and the  radiance dis-  
t r i b u t i o n  obtained with the radiometer is  given by f igure  6(b) .  
tio-ns a r e  of the  Gaussian shape that was assumed i n  deducing the  correct ion 
method. The same r e s u l t s  were obtained a t  other distances from the j e t  axis. 
The oscil lograph records of amplitude, given i n  f igure  4 (p.  8 > ,  i l l u s t r a t e  the  
random waveforms. 

Both d is t r ibu-  

CONCLUSION 

Because of the nonlinear r e l a t i o n  between radiance and temperature, the  
average radiance measured corresponds t o  a temperature higher than t h e  average 
temperature. It w a s  found t h a t  the e r r o r  i n  the  average of a f luc tua t ing  tem- 
perature 

(1) Increases with the square of the  average deviation of f luc tua t ion  

( 2 )  Varies inversely with wavelength, being grea.ter a t  shor te r  wavelengths 

(3) Approaches the  average deviation a t  wavelengths i n  the v i s i b l e  spec- 

(4) I s  r e l a t i v e l y  independent of the  funct ional  form of the probabi l i ty  

These conclusions apply when the  temperature i s  averaged over some period 

t r u m  as the average deviation increases and approaches 10 percent 

density d i s t r i b u t i o n  of temperature 

of integrat ion.  I n  addition, a t tenuat ion by space-averaging of the temperature 
f luc tua t ions  over the  o p t i c a l  path may contribute an addi t iona l  e r ror .  

I n  a t e s t  f a c i l i t y  designed f o r  smooth combustion of gasoline and a i r ,  a 
Gaussian probabi l i ty  densi ty  d i s t r i b u t i o n  of temperature w a s  recorded. The 
corresponding temperature e r r o r  by the sodium l ine- reversa l  measurement w a s  
1.5 percent. 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, May 21, 1964 
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APPENDTX A 

C 

F 

1 

M 

N 

P 

T 

T 
- 

'\ TF 

TG 
- 
T O  

t 

X 

P 

SYMBOLS 

parameters of van ' t  Hoff eq. ( 6 )  

constant of parabola eq. (10); C = 0.8 

Planck rad ia t ion  constants j  c2 = 1.438 (cm)(OK) 

constant defined following eq. ( B l )  

rectangular wave parameter defined by eq. (E4) 

constants af eq. (B7) 

s p e c t r a l  absorption coeff ic ient  

path length,  i n .  

distance between thermocouples, i n .  

width of o p t i c a l  path, i n .  

radiance, w/( s teradian)  ( em2) 

average radiance of gas 

s p e c t r a l  radiance, w/( s teradian)  ( em3) 

height oT o p t i c a l  path, i n .  

pr  obab i lit y density d is t r ibu t ion  

radius of j e t ,  i n .  

temperature , OK 
average temperature , OK 

temperature grea te r  than average, OK 

temperature l e s s  than average, OK 

average o p t i c a l l y  determined temperature, OK 

time, sec 

distance along o p t i c a l  path, i n .  

parameter defined by eq. (14)  

11 



r parameter defined by eq. (12) 

spectral emissivity 

A wavelength, em 

Q, radiated flux, w 

Subscript : 

C on centerline of jet 

Superscript : 

(-) average 
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APPENDrX B 

AVEIIAGING ERROR WITH PERIODIC WAVEFORMS 

For the  d is t r ibu t ions  considered here, p(T) i s  an algebraic function. 
in tegra t ion  makes use of the T a y l o r  s e r i e s  expansion of the Wien rad ia t ion  
equation i t s e l f  instead of an expansion of t h e  exponent of the  Wien equation 
as w a s  used i n  the  sec t ion  ANALYSIS. The expansion i s  

The 

where 

Sinusoidal Waveform 
- 

For a s inusoidal  temperature f luc tua t ion  T - T = (sc/2)AT s i n  8 ,  the  d is -  
t r i b u t i o n  i s  

1 

l 2  
P(T) = 

r~ [(;ATT - ( T  - ?)' 

having the l i m i t s  -AT r~ /2  < T - < AT n/2. Integrat ing equations ( B l )  and 
( B 2 )  and following the  procedure i n  the sect ion ANALYSIS give 

Re c t angular Wdve f o m  

The rectangular waveform shown i n  f igure  7 has a parameter F such tha t  
F = 1 for a square wave. The r e l a t i o n s  a r e  

13 
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1 - 2 4  where 
Figure 7. - Rectangular wave- 

form. 

T F - T = -  - A T  
F 

- T - T G = -  AT 
2 - F  

TF > !F > TG 

The average radiance due t o  the  temperatures TF and TG i s  

In tegra t ing  equations (Bl), ( M ) ,  and (B5) and following the procedure i n  t h e  
s e c t i on ANALYSIS give 

Small Error  Approximation 

For s m a l l  e r r o r s ,  where A T P  << 1, the  temperature e r r o r  equations, ob- 
ta ined  by combining equation (13) with equations (14) and ( B 3 )  or (B6), take 
the  form 

where E is defined by equations (B1) and (5) and the  constants ICl, K2, and 
C are  given i n  t h e  following t a b l e :  

14 



Temperature variation 

Random (Gaussian 
distribution) 

Sinusoid 

0.79 

.62 

.50 

.55 

. 6 7  

.98 

.98 

.67 

.55 

Square wave, F = 1.0 

Rectangular wave 

F =0.7 

0 

0 

0 

.12 

.30 

.90 

-.go 

-.30 

-.12 

. 5  

Average 
temper - 
ature, 
T, 
OK 

2837.5 

- 

2837.5 

2837.5 

. 3  

ATfi 

0.0224 

.0224 

.0224 

1.7 

1.5 

1.3 

C 

0.8 

1 

1 

1 

1 

1 

1 

1 

1 

Oscillograph waveform -I 

This t a b l e  shows that K1 i s  not sens i t ive  t o  the type of temperature 
var ia t ion .  The wave shape can usually be i d e n t i f i e d  with s u f f i c i e n t  precision 
t o  estimate K1 and Kz by observing an oscilloscope pat tern.  

A numerical example of the  rectangular type of temperature var ia t ion  i s  
given i n  the following t a b l e  t o  indicate  the  r e l a t i v e  magnitude of the  two 
terms of equation ( B 7 )  with an asymmetrical waveform: 

Waveform 
7 
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